



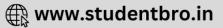

### SET~1

# Series EF1GH/5



| प्रश्न-पत्र काड | 0 - 1 - 11 |
|-----------------|------------|
|                 | 65/5/1     |

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें । Candidates must write the Q.P. Code on the title page of the answer-book.


# गणित

# MATHEMATICS

| निर्धारित समय : 3 घण्टे                                                                                                                                                       | अधिकतम अंक : 80                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Time allowed : <b>3</b> hours                                                                                                                                                 | Maximum Marks : 80                           |
| नोट / NOTE :                                                                                                                                                                  |                                              |
| (i) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 23 हैं।                                                                                                             |                                              |
| Please check that this question paper conto                                                                                                                                   |                                              |
| (ii) प्रश्न–पत्र में दाहिने हाथ की ओर दिए गए प्रश्न–पत्र कोड क<br>लिखें।                                                                                                      | ो परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर |
| Q.P. Code given on the right hand side of t<br>written on the title page of the answer-bool<br>(iii) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 38 प्रश्न हैं।                   |                                              |
| (iv) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुरि                                                                                                                |                                              |
| Please write down the serial number<br>book before attempting it.                                                                                                             | -                                            |
| (v) इस प्रश्न–पत्र को पढ़ने के लिए 15 मिनट का समय दिया<br>बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक परीक्ष<br>के दौरान वे उत्तर–पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।         |                                              |
| 15 minute time has been allotted to read<br>paper will be distributed at 10.15 a.m. F<br>candidates will read the question paper of<br>on the answer-book during this period. | rom 10.15 a.m. to 10.30 a.m., the            |
| 65/5/1 265 A ~~~ Page 1                                                                                                                                                       | P.T.O                                        |

CLICK HERE

≫





सामान्य निर्देश :

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका पालन कीजिए :

- (i) इस प्रश्न-पत्र में कुल 38 प्रश्न हैं। **सभी** प्रश्न अनिवार्य हैं।
- (ii) प्रश्न-पत्र पाँच खण्डों में विभाजित है खण्ड-क, ख, ग, घ तथा ङ ।
- (iii) खण्ड **क** में प्रश्न संख्या 1 से 18 तक बहुविकल्पीय तथा प्रश्न संख्या 19 एवं 20 अभिकथन एवं तर्क आधारित **एक-एक** अंक के प्रश्न हैं।
- (iv) खण्ड ख में प्रश्न संख्या 21 से 25 तक अति लघु उत्तरीय प्रकार के दो–दो अंकों के प्रश्न हैं।
- (v) खण्ड ग में प्रश्न संख्या 26 से 31 तक लघु उत्तरीय प्रकार के तीन–तीन अंकों के प्रश्न हैं।
- (vi) खण्ड **घ** में प्रश्न संख्या 32 से 35 तक दीर्घ उत्तरीय प्रकार के **पाँच पाँच** अंकों के प्रश्न हैं।
- (vii) खण्ड **ङ** में प्रश्न संख्या 36 से 38 प्रकरण अध्ययन आधारित **चार-चार** अंकों के प्रश्न हैं । प्रत्येक में **एक-एक** अंक के **दो** प्रश्न तथा **दो** अंक का **एक** प्रश्न है । आंतरिक विकल्प 2 अंकों के प्रश्न में दिया गया है ।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड– **ख** के 2 प्रश्नों में, खण्ड– **ग** के 3 प्रश्नों में, खण्ड– **घ** के 2 प्रश्नों में तथा खण्ड–**ङ** के 2 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है।
- (ix) कैल्कुलेटर का उपयोग वर्जित है।



Get More Learning Materials Here : 🏬







#### Read the following instructions very carefully and follow them :

- (i) This question paper contains 38 questions. All questions are compulsory.
- (ii) Question paper is divided into FIVE Sections Section A, B, C, D and E.
- (iii) In Section A Question Number 1 to 18 are Multiple Choice Questions (MCQ) type and Question Number 19 & 20 are Assertion-Reason based questions of 1 mark each.
- (iv) In Section B Question Number 21 to 25 are Very Short Answer (VSA) type questions of 2 marks each.
- (v) In Section C Question Number 26 to 31 are Short Answer (SA) type questions, carrying 3 marks each.
- (vi) In Section D Question Number 32 to 35 are Long Answer (LA) type questions carrying 5 marks each.
- (vii) In Section E Question Number 36 to 38 are case study based questions carrying 4 marks each where 2 VSA type questions are of 1 mark each and 1 SA type question is of 2 marks. Internal choice is provided in 2 marks question in each case-study.
- (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section – B, 3 questions in Section – C, 2 questions in Section – D and 2 questions in Section – E.
- (ix) Use of calculators is **NOT** allowed.



#### खण्ड – क

### (बहुविकल्पीय प्रश्न)

प्रत्येक प्रश्न का 1 अंक है।

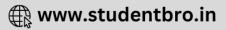
दिए गए चार विकल्पों में से सही विकल्प का चयन कीजिए :

- 1. माना  $A = \{3, 5\}$  है, तो A में स्वतुल्य संबंधों की संख्या है :
  - (a) 2 (b) 4
  - (c) 0 (d) 8

2. 
$$\sin\left[\frac{\pi}{3} + \sin^{-1}\left(\frac{1}{2}\right)\right]$$
 का मान है :  
(a) 1 (b)  $\frac{1}{2}$   
(c)  $\frac{1}{3}$  (d)  $\frac{1}{4}$ 

3. एक वर्ग आव्यूह A के लिए यदि  $A^2 - A + I = O$  है, तो  $A^{-1}$  बराबर है :

(a) A (b) A + I(c) I - A (d) A - I


4. 
$$\operatorname{ad} A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}, B = \begin{bmatrix} x & 0 \\ 1 & 1 \end{bmatrix}$$
 and  $A = B^2 \overline{\xi}, \overline{\chi}$  and  $x = \overline{\chi}$  and  $x = \overline{\chi}$  and  $\overline{\chi}$  and  $\overline{\chi}$ 

5. 
$$\mathbf{a} \mathbf{f} \mathbf{f} \begin{vmatrix} \alpha & 3 & 4 \\ 1 & 2 & 1 \\ 1 & 4 & 1 \end{vmatrix} = 0 \mathbf{g}, \mathbf{f} \mathbf{h} \mathbf{a} \mathbf{a} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{f} \mathbf{g}$$
:  
(a) 1 (b) 2  
(c) 3 (d) 4

65/5/1

CLICK HERE

Page 4





#### **SECTION – A**

#### (Multiple Choice Questions)

Each question carries 1 mark.

Select the correct option out of the four given options :

- 1. Let  $A = \{3, 5\}$ . Then number of reflexive relations on A is
  - (a) 2 (b) 4 (d) (a)
  - (c) 0 (d) 8
- 2.  $\sin\left[\frac{\pi}{3} + \sin^{-1}\left(\frac{1}{2}\right)\right]$  is equal to (a) 1 (b)  $\frac{1}{2}$ (c)  $\frac{1}{3}$  (d)  $\frac{1}{4}$

3. If for a square matrix A,  $A^2 - A + I = O$ , then  $A^{-1}$  equals (a) A (b) A + I(c) I - A (d) A - I

4. If 
$$A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$
,  $B = \begin{bmatrix} x & 0 \\ 1 & 1 \end{bmatrix}$  and  $A = B^2$ , then x equals  
(a)  $\pm 1$  (b)  $-1$   
(c)  $1$  (d)  $2$ 

5. If 
$$\begin{vmatrix} \alpha & 3 & 4 \\ 1 & 2 & 1 \\ 1 & 4 & 1 \end{vmatrix} = 0$$
, then the value of  $\alpha$  is  
(a) 1 (b) 2  
(c) 3 (d) 4

Page 5

CLICK HERE

»

65/5/1

*P.T.O.* 



🕀 www.studentbro.in

- 6.  $x^{2x}$  का x के सापेक्ष अवकलज है :
  - (a)  $x^{2x-1}$  (b)  $2x^{2x} \log x$ (c)  $2x^{2x}(1 + \log x)$  (d)  $2x^{2x}(1 - \log x)$

7. फलन f(x) = [x], जहाँ [x] महत्तम पूर्णांक जो कि x से छोटा या x के समान है, संतत है :

- (a) x = 1 पर (b) x = 1.5 पर
- (c) x = -2 पर (d) x = 4 पर
- 8.  $\overline{u}$  at  $x = A \cos 4t + B \sin 4t \$ ,  $\overline{t}, \ \overline{t}, \ \frac{d^2 x}{dt^2}$  at  $\overline{t}, \$ (a) x (b) -x(c) 16x (d) -16x
- 9. फलन  $f(x) = 2x^3 + 9x^2 + 12x 1$  जिस अंतराल में हासमान है, वह है :
  - (a)  $(-1, \infty)$  (b) (-2, -1)(c)  $(-\infty, -2)$  (d) [-1, 1]
- 10.  $\int \frac{\sec x}{\sec x \tan x} \, dx \, \overline{a} \overline{x} \overline{a} \overline{x} \overline{e}$ : (a)  $\sec x - \tan x + c$ (b)  $\sec x + \tan x + c$ (c)  $\tan x - \sec x + c$ (d)  $-(\sec x + \tan x) + c$
- 11.  $\int_{-1}^{1} \frac{|x-2|}{x-2} dx, x \neq 2$  का मान है : (a) 1 (b) -1 (c) 2 (d) -2

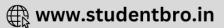
65/5/1

Page 6

CLICK HERE

>>




- 6. The derivative of  $x^{2x}$  w.r.t. *x* is
  - (a)  $x^{2x-1}$  (b)  $2x^{2x} \log x$ (c)  $2x^{2x}(1 + \log x)$  (d)  $2x^{2x}(1 - \log x)$
- 7. The function f(x) = [x], where [x] denotes the greatest integer less than or equal to x, is continuous at
  - (a) x = 1 (b) x = 1.5
  - (c) x = -2 (d) x = 4
- 8. If  $x = A \cos 4t + B \sin 4t$ , then  $\frac{d^2x}{dt^2}$  is equal to
  - (a) x (b) -x
  - (c) 16x (d) -16x
- 9. The interval in which the function  $f(x) = 2x^3 + 9x^2 + 12x 1$  is decreasing, is
  - (a)  $(-1, \infty)$  (b) (-2, -1)
  - (c)  $(-\infty, -2)$  (d) [-1, 1]
- 10.  $\int \frac{\sec x}{\sec x \tan x} \, dx \text{ equals}$ (a)  $\sec x - \tan x + c$ (b)  $\sec x + \tan x + c$ (c)  $\tan x - \sec x + c$ (d)  $-(\sec x + \tan x) + c$

11. 
$$\int_{-1}^{1} \frac{|x-2|}{|x-2|} dx, x \neq 2 \text{ is equal to}$$
  
(a) 1 (b) -1  
(c) 2 (d) -2

65/5/1

Page 7

Get More Learning Materials Here : 💻





# **ाहि** 12. अवकल समीकरण $\frac{d}{dx} \left( \left( \frac{dy}{dx} \right)^3 \right)$ की कोटि और घात का योगफल है : (a) 2 (b) 3 (c) 5 (d) 0

13.  $\vec{c}$ ì सदिश  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$  तथा  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$  संरेख हैं, यदि (a)  $a_1b_1 + a_2b_2 + a_3b_3 = 0$  (b)  $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$ (c)  $a_1 = b_1, a_2 = b_2, a_3 = b_3$  (d)  $a_1 + a_2 + a_3 = b_1 + b_2 + b_3$ 

- 14. सदिश  $6\hat{i} 2\hat{j} + 3\hat{k}$  का परिमाण है :(a) 1(b) 5(c) 7(d) 12
- 15. यदि कोई रेखा x, y तथा z-अक्ष से क्रमशः 90°, 135° तथा 45° के कोण बनाती है, तो इसके दिक् कोसाइन हैं :
  - (a)  $0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$ (b)  $-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}$ (c)  $\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}$ (d)  $0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$
- 16. रेखाओं 2x = 3y = -z तथा 6x = -y = -4z के बीच का कोण है :
  - (a)  $0^{\circ}$  (b)  $30^{\circ}$  (c)  $45^{\circ}$
  - (c)  $45^{\circ}$  (d)  $90^{\circ}$

17. किन्हीं दो घटनाओं A तथा B के लिए यदि  $P(A) = \frac{4}{5}$  तथा  $P(A \cap B) = \frac{7}{10}$  है, तो P(B/A) बराबर है :

| (a) | $\frac{1}{10}$ | (b) | $\frac{1}{8}$   |
|-----|----------------|-----|-----------------|
| (c) | $\frac{7}{8}$  | (d) | $\frac{17}{20}$ |

65/5/1

Get More Learning Materials Here :



Page 8

# 🕀 www.studentbro.in



12. The sum of the order and the degree of the differential equation  $\frac{d}{dx} \left( \left( \frac{dy}{dx} \right)^3 \right)$  is (a) 2 (b) 3 (c) 5 (d) 0

13. Two vectors  $\overrightarrow{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$  and  $\overrightarrow{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$  are collinear if

- (a)  $a_1b_1 + a_2b_2 + a_3b_3 = 0$ (b)  $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$ (c)  $a_1 = b_1, a_2 = b_2, a_3 = b_3$ (d)  $a_1 + a_2 + a_3 = b_1 + b_2 + b_3$
- 14. The magnitude of the vector  $6\hat{i} 2\hat{j} + 3\hat{k}$  is (a) 1 (b) 5
  - (c) 7 (d) 12

15. If a line makes angles of  $90^{\circ}$ ,  $135^{\circ}$  and  $45^{\circ}$  with the *x*, *y* and *z* axes respectively, then its direction cosines are

| (a) | $0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$ | (b) | $-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}$ |
|-----|----------------------------------------------|-----|----------------------------------------------|
| (c) | $\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}$ | (d) | $0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$  |

16. The angle between the lines 2x = 3y = -z and 6x = -y = -4z is (a)  $0^{\circ}$  (b)  $30^{\circ}$ (c)  $45^{\circ}$  (d)  $90^{\circ}$ 

17. If for any two events A and B,  $P(A) = \frac{4}{5}$  and  $P(A \cap B) = \frac{7}{10}$ , then P(B|A) is equal to

| (a) | $\frac{1}{10}$ | (b) | $\frac{1}{8}$   |
|-----|----------------|-----|-----------------|
| (c) | $\frac{7}{8}$  | (d) | $\frac{17}{20}$ |

65/5/1

Page 9

CLICK HERE

P.T.O.



18. पाँच अनभिनत सिक्कों को एक साथ उछाला जाता है। कम से कम एक चित आने की प्रायिकता है :

| (a) | $\frac{27}{32}$ | (b) | $\frac{5}{32}$ |
|-----|-----------------|-----|----------------|
| (c) | $\frac{31}{32}$ | (d) | $\frac{1}{32}$ |

#### अभिकथन – तर्क आधारित प्रश्न

निम्नलिखित प्रश्न 19 व 20 में एक अभिकथन (A) के बाद एक तर्क कथन (R) दिया गया है। निम्न विकल्पों में से सही उत्तर चुनिए :

- (a) (A) तथा (R) दोनों सत्य हैं और (R), कथन (A) की पूरी व्याख्या करता है।
- (b) (A) तथा (R) दोनों सत्य हैं, परंतु (R), कथन (A) की सही व्याख्या नहीं करता है।
- (c) (A) सत्य है और (R) सत्य नहीं है।
- (d) (A) असत्य है, जबकि (R) सत्य है।
- 19. अभिकथन (A) : दो सिक्के एक साथ उछाले गए । यदि यह ज्ञात है कि कम से कम एक चित आया है,
   तो दोनों चितों के आने की प्रायिकता 1/3 है ।

तर्क (R) : माना E तथा F, एक यादृच्छिक प्रयोग की दो घटनाएँ हैं, तो  $P(F/E) = \frac{P(E \cap F)}{P(E)}$ .

20. अभिकथन (A) : 
$$\int_{2}^{8} \frac{\sqrt{10-x}}{\sqrt{x}+\sqrt{10-x}} \, dx = 3 \frac{3}{6} + \frac{3}{6} \frac{3}{6}$$
  
तर्क (R) :  $\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a+b-x) \, dx$ 

65/5/1

Page 10

**CLICK HERE** 

🕀 www.studentbro.in



18. Five fair coins are tossed simultaneously. The probability of the events that atleast one head comes up is

| (a) | $\frac{27}{32}$ | (b) | $\frac{5}{32}$ |
|-----|-----------------|-----|----------------|
|-----|-----------------|-----|----------------|

(c)  $\frac{31}{32}$  (d)  $\frac{1}{32}$ 

#### **Assertion – Reason Based Questions**

In the following questions **19** and **20**, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices :

- (a) Both (A) and (R) are true and (R) is the correct explanation of (A).
- (b) Both (A) and (R) are true, but (R) is not the correct explanation of (A).
- (c) (A) is true and (R) is false.
- (d) (A) is false, but (R) is true.
- 19. Assertion (A) : Two coins are tossed simultaneously. The probability of getting two heads, if it is known that at least one head comes up, is  $\frac{1}{3}$ .

**Reason (R) :** Let E and F be two events with a random experiment, then  $P(F/E) = \frac{P(E \cap F)}{P(E)}.$ 

20. Assertion (A): 
$$\int_{2}^{8} \frac{\sqrt{10-x}}{\sqrt{x}+\sqrt{10-x}} \, dx = 3$$
  
Reason (R):  $\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a+b-x) \, dx$ 

65/5/1

Page 11

CLICK HERE

*P.T.O.* 

Get More Learning Materials Here : 💶





#### खण्ड – ख

इस खण्ड में अति लघु उत्तरीय (VSA) प्रकार के प्रश्न हैं जिनमें प्रत्येक के 
$$2$$
 अंक हैं ।

21. निम्न फलन की मुख्य मान शाखा का प्रान्त व परिसर ज्ञात कीजिए :

$$f(x) = \tan^{-1} x$$

22. (a) 
$$\operatorname{acc} f(x) = \begin{cases} x^2, & \operatorname{acc} x \ge 1 \\ x, & \operatorname{acc} x < 1^{\frac{1}{6}}, & \operatorname{cl} x < 1^{\frac{1}{6}}, & \operatorname{cl} x < 1^{\frac{1}{6}} \end{cases}$$

अथवा

(b) यदि फलन 
$$f(x) = \begin{cases} \frac{\sin^2 \lambda x}{x^2}, & \text{यदि } x \neq 0 \\ 1, & \text{J} \end{cases}$$
,  $x = 0$  पर संतत है, तो ' $\lambda$ ' के मान ज्ञात कीजिए |

23. रेखाओं 2x + y = 8, y = 2, y = 4 तथा y-अक्ष द्वारा घिरे क्षेत्र को आलेखित कीजिए । अतः समाकलन के प्रयोग से इस क्षेत्र का क्षेत्रफल ज्ञात कीजिए ।

24. (a) यदि सदिश 
$$\overrightarrow{a}$$
 तथा  $\overrightarrow{b}$  ऐसे हैं कि |  $\overrightarrow{a}$  | = 3, |  $\overrightarrow{b}$  | =  $\frac{2}{3}$  तथा  
 $\overrightarrow{a} \times \overrightarrow{b}$  एक मात्रक सदिश है, तो  $\overrightarrow{a}$  और  $\overrightarrow{b}$  के बीच का कोण ज्ञात कीजिए ।

अथवा

- (b) उस समांतरचतुर्भुज का क्षेत्रफल ज्ञात कीजिए जिसकी संलग्न भुजाएँ सदिशों  $\vec{a} = \hat{i} \hat{j} + 3\hat{k}$ तथा  $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$  द्वारा निर्धारित हैं।
- 25. बिंदु A (1, 2, -1) से होकर जाने वाली तथा रेखा 5x 25 = 14 7y = 35z के समांतर एक रेखा के सदिश व कार्तीय समीकरण ज्ञात कीजिए ।

65/5/1 ~~~ Page 12

Get More Learning Materials Here : 💶







#### **SECTION – B**

This section comprises of Very Short Answer (VSA) type questions of 2 marks each.

21. Write the domain and range (principle value branch) of the following functions :

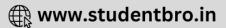
 $f(x) = \tan^{-1} x$ 

22. (a) If  $f(x) = \begin{cases} x^2, & \text{if } x \ge 1 \\ x, & \text{if } x < 1 \end{cases}$  then show that f is not differentiable at x = 1.

#### OR

(b) Find the value(s) of ' $\lambda$ ', if the function

$$f(x) = \begin{cases} \frac{\sin^2 \lambda x}{x^2}, & \text{if } x \neq 0 \text{ is continuous at } x = 0. \\ 1, & \text{if } x = 0 \end{cases}$$


- 23. Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the y-axis. Hence, obtain its area using integration.
- 24. (a) If the vectors  $\overrightarrow{a}$  and  $\overrightarrow{b}$  are such that  $|\overrightarrow{a}| = 3$ ,  $|\overrightarrow{b}| = \frac{2}{3}$  and  $\overrightarrow{a} \times \overrightarrow{b}$  is a unit vector, then find the angle between  $\overrightarrow{a}$  and  $\overrightarrow{b}$ .

#### OR

- (b) Find the area of a parallelogram whose adjacent sides are determined by the vectors  $\vec{a} = \hat{i} - \hat{j} + 3\hat{k}$  and  $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$ .
- 25. Find the vector and the cartesian equations of a line that passes through the point A(1, 2, -1) and parallel to the line 5x 25 = 14 7y = 35z.
- 65/5/1 ~~~ Page 13 P.T.O.









खण्ड – ग

इस खण्ड में लघु उत्तरीय (SA) प्रकार के प्रश्न हैं जिनमें प्रत्येक के 3 अंक हैं ।

26.  $\operatorname{alg} A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$  है, तो दर्शाइए कि  $A^3 - 23A - 40I = O$ .

27. (a) 
$$\sec^{-1}\left(\frac{1}{\sqrt{1-x^2}}\right)$$
 का  $\sin^{-1}(2x\sqrt{1-x^2})$  के सापेक्ष अवकलन कीजिए।

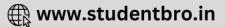
अथवा

(b) यदि y = tan x + sec x है, तो सिद्ध कीजिए कि 
$$\frac{d^2y}{dx^2} = \frac{\cos x}{(1-\sin x)^2}$$

28. (a) मान ज्ञात कीजिए : 
$$\int\limits_{0}^{2\pi} rac{1}{1+\mathrm{e}^{\sin x}} \,\mathrm{d}x$$

अथवा

(b) ज्ञात कीजिए : 
$$\int \frac{x^4}{(x-1)(x^2+1)} \, \mathrm{d}x$$


29. निम्न द्वारा दर्शाए गए क्षेत्र का समाकलन से क्षेत्रफल ज्ञात कीजिए :

$$\{(x, y) : y^2 \le 2x$$
 तथा  $y \ge x - 4\}$ 

**65/5/1 ~~~ Page 14** 

Get More Learning Materials Here : 💶







#### **SECTION – C**

This section comprises of Short Answer (SA) type questions of 3 marks each.

26. If 
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$$
, then show that  $A^3 - 23A - 40I = O$ .

27. (a) Differentiate 
$$\sec^{-1}\left(\frac{1}{\sqrt{1-x^2}}\right)$$
 w.r.t.  $\sin^{-1}(2x\sqrt{1-x^2})$ .

OR

(b) If 
$$y = \tan x + \sec x$$
, then prove that  $\frac{d^2y}{dx^2} = \frac{\cos x}{(1 - \sin x)^2}$ .

28. (a) Evaluate : 
$$\int_{0}^{2\pi} \frac{1}{1 + e^{\sin x}} dx$$

(b) Find : 
$$\int \frac{x^4}{(x-1)(x^2+1)} dx$$

29. Find the area of the following region using integration :

$$\{(x, y) : y^2 \le 2x \text{ and } y \ge x - 4\}$$

65/5/1 ~~~ Page 15 P.T.O.
Get More Learning Materials Here :



30. (a) बिंदु P(0, 2, 3) से रेखा  $\frac{x+3}{5} = \frac{y-1}{2} = \frac{z+4}{3}$  पर खींचे गए लंब के पाद के निर्देशांक ज्ञात कीजिए।

#### अथवा

(b) तीन संदिश 
$$\overrightarrow{a}$$
,  $\overrightarrow{b}$  तथा  $\overrightarrow{c}$  इस प्रकार हैं कि  $\overrightarrow{a}$  +  $\overrightarrow{b}$  +  $\overrightarrow{c}$  =  $\overrightarrow{0}$  है | राशि  $\mu$  =  $\overrightarrow{a}$  ·  $\overrightarrow{b}$   
+  $\overrightarrow{b}$  ·  $\overrightarrow{c}$  +  $\overrightarrow{c}$  ·  $\overrightarrow{a}$  का मान ज्ञात कीजिए, यदि |  $\overrightarrow{a}$  | = 3, |  $\overrightarrow{b}$  | = 4 तथा |  $\overrightarrow{c}$  | = 2 है |

31. निम्न रेखाओं के बीच की दूरी ज्ञात कीजिए :

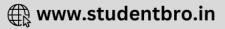
$$\vec{r} = (\hat{i} + 2\hat{j} - 4\hat{k}) + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k});$$
  
$$\vec{r} = (3\hat{i} + 3\hat{j} - 5\hat{k}) + \mu(4\hat{i} + 6\hat{j} + 12\hat{k})$$

#### खण्ड – घ

### इस खण्ड में दीर्घ उत्तरीय (LA) प्रकार के प्रश्न हैं जिनमें प्रत्येक के 5 अंक हैं ।

 32. (a) एक समबाहु त्रिभुज की माध्यिका 2√3 cm/s की दर से बढ़ रही है। इसकी भुजा के बढ़ने की दर ज्ञात कीजिए।

#### अथवा


(b) दो संख्याओं का योग 5 है। यदि इन संख्याओं के घनों का योगफल न्यूनतम हो, तो इनके वर्गों का योगफल ज्ञात कीजिए।

Page 16

65/5/1

Get More Learning Materials Here : 💻







30. (a) Find the coordinates of the foot of the perpendicular drawn from the point P(0, 2, 3) to the line  $\frac{x+3}{5} = \frac{y-1}{2} = \frac{z+4}{3}$ .

#### OR

- (b) Three vectors  $\overrightarrow{a}$ ,  $\overrightarrow{b}$  and  $\overrightarrow{c}$  satisfy the condition  $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ . Evaluate the quantity  $\mu = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$ , if  $|\overrightarrow{a}| = 3$ ,  $|\overrightarrow{b}| = 4$  and  $|\overrightarrow{c}| = 2$ .
- 31. Find the distance between the lines :

$$\vec{r} = (\hat{i} + 2\hat{j} - 4\hat{k}) + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k});$$
  
$$\vec{r} = (3\hat{i} + 3\hat{j} - 5\hat{k}) + \mu(4\hat{i} + 6\hat{j} + 12\hat{k})$$

#### $\mathbf{SECTION} - \mathbf{D}$

This section comprises of Long Answer (LA) type questions of 5 marks each.

32. (a) The median of an equilateral triangle is increasing at the rate of  $2\sqrt{3}$  cm/s. Find the rate at which its side is increasing.

#### OR

(b) Sum of two numbers is 5. If the sum of the cubes of these numbers is least, then find the sum of the squares of these numbers.

65/5/1 ~~~ Page 17 P.T.O.

Get More Learning Materials Here : 💻







33. मान ज्ञात कीजिए : 
$$\int_{0}^{\frac{\pi}{2}} \sin 2x \tan^{-1} (\sin x) dx$$

34. निम्न रैखिक प्रोग्रामन समस्या को आलेख द्वारा हल कीजिए :

व्यवरोधों : 
$$3x + 2y \le 9$$
,  
 $3x + y \le 9$ ,  
 $x \ge 0, y \ge 0$  के अंतर्गत  
 $P = 70x + 40y$  का अधिकतम मान ज्ञात कीजिए ।

35. (a) एक बहुविकल्पी प्रश्न का उत्तर देने में एक विद्यार्थी या तो प्रश्न का उत्तर जानता है या वह अनुमान लगाता है । मान लें कि उसके उत्तर जानने की प्रायिकता 3/5 है और अनुमान लगाने की प्रायिकता 2/5 है । मान लें कि छात्र के प्रश्न के उत्तर का अनुमान लगाने पर सही उत्तर देने की प्रायिकता 1/3 है, तो क्या प्रायिकता है कि कोई छात्र प्रश्न का उत्तर जानता है, दिया है कि उसने सही उत्तर दिया है ?

#### अथवा

(b) एक बक्से में 10 टिकटें हैं, जिनमें 2 पर ₹ 8 प्रति टिकट का इनाम है, 5 पर ₹ 4 प्रति टिकट का इनाम है तथा शेष 3 पर ₹ 2 प्रति टिकट का इनाम है। यदि एक टिकट यादृच्छया निकाला गया तो इनाम की राशि का माध्य ज्ञात कीजिए।

65/5/1 ~~~ Page 18



33. Evaluate : 
$$\int_{0}^{\frac{\pi}{2}} \sin 2x \tan^{-1} (\sin x) dx$$

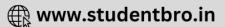
34. Solve the following Linear Programming Problem graphically :

Maximize : P = 70x + 40ysubject to :  $3x + 2y \le 9$ ,  $3x + y \le 9$ ,  $x \ge 0, y \ge 0$ 

35. (a) In answering a question on a multiple choice test, a student either knows the answer or guesses. Let  $\frac{3}{5}$  be the probability that he knows the answer and  $\frac{2}{5}$  be the probability that he guesses. Assuming that a student who guesses at the answer will be correct with probability  $\frac{1}{3}$ . What is the probability that the student knows the answer, given that he answered it correctly ?

#### OR

(b) A box contains 10 tickets, 2 of which carry a prize of ₹ 8 each, 5 of which carry a prize of ₹ 4 each, and remaining 3 carry a prize of ₹ 2 each. If one ticket is drawn at random, find the mean value of the prize.


65/5/1

Page 19

*P.T.O.* 

Get More Learning Materials Here : 🚛








#### खण्ड – ङ

इस खण्ड में 3 प्रकरण/परिच्छेद आधारित प्रश्न हैं जिनमें प्रत्येक के 4 अंक हैं । प्रथम दो प्रकरण अध्ययन प्रश्नों में क्रमशः 1, 1, 2 अंकों के तीन उप-भाग (I), (II), (III) हैं । तीसरे प्रकरण अध्ययन प्रश्न में प्रत्येक 2 अंकों के दो उप-भाग हैं ।

#### प्रकरण अध्ययन-I

36. एक संस्था ने दो वर्गों–छात्र व छात्राओं के लिए बाईक दौड़ का आयोजन किया । कुल 28 भाग लेने वाले
थे । अन्त में वर्ग 1 में से तीन तथा वर्ग 2 में दो को अंतिम दौड़ के लिए चुना गया । रवि ने अपने कॉलेज
प्रोजेक्ट के लिए इन प्रतिभागियों से दो समुच्चय B और G बनाए ।

माना B =  $\{b_1, b_2, b_3\}$  तथा G =  $\{g_1, g_2\}$ , जहाँ B अन्तिम दौड़ के लिए चुने गए छात्रों तथा G चुनी गई छात्राओं को निरूपित करते हैं



उपरोक्त के आधार पर निम्न के उत्तर दीजिए :

- (I) B से G में कितने संबंध सम्भव हैं ?
- (II) B से G के सभी संभव संबंधों में कितने B से G के फलन हैं ?
- (III) माना  $R : B \rightarrow B$ ,  $R = \{(x, y) : x \text{ ray } y \text{ van } \text{ fl } \vec{e}^{\dagger} \text{ fl} \ \text{grt} \ \text{ray } \vec{e}^{\dagger} \text{ ray } \vec{e}^{\dagger} \vec{e}^{\dagger} \text{ ray } \vec{e}^{\dagger} \vec{e}^$

#### अथवा

(III) यदि फलन  $f: B \to G, f = \{(b_1, g_1), (b_2, g_2), (b_3, g_1)\}$  द्वारा परिभाषित है तो जाँच कीजिए कि क्या f एकैकी तथा आच्छादक है । अपने उत्तर का औचित्य दीजिए ।

65/5/1

 $\sim$ 

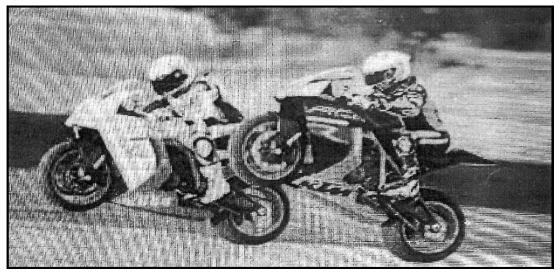
Page 20

Get More Learning Materials Here : 💻








#### **SECTION – E**

This section comprises of 3 case study/passage-based questions of 4 marks each with two sub-parts. First two case study questions have three sub – parts (I), (II), (III) of marks 1, 1, 2 respectively. The third case study question has two sub – parts (I) and (II) of marks 2 each.

#### Case Study-I

36. An organization conducted bike race under two different categories – Boys and Girls. There were 28 participants in all. Among all of them, finally three from category 1 and two from category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project.

Let  $B = \{b_1, b_2, b_3\}$  and  $G = \{g_1, g_2\}$ , where B represents the set of Boys selected and G the set of Girls selected for the final race.



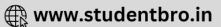
Based on the above information, answer the following questions :

- (I) How many relations are possible from B to G?
- (II) Among all the possible relations from B to G, how many functions can be formed from B to G ?
- (III) Let  $R : B \rightarrow B$  be defined by  $R = \{(x, y) : x \text{ and } y \text{ are students of the same sex}\}$ . Check if R is an equivalence relation.

OR

(III) A function  $f: B \rightarrow G$  be defined by  $f = \{(b_1, g_1), (b_2, g_2), (b_3, g_1)\}$ .

Check if f is bijective. Justify your answer.


65/5/1

Page 21

*P.T.O.* 

Get More Learning Materials Here : 💻







#### प्रकरण अध्ययन-II

37. गौतम 5 पैन, 3 बैग तथा 1 उपकरण बॉक्स ₹ 160 में खरीदता है। उसी दुकान से विक्रम 2 पैन, 1 बैग तथा 3 उपकरण बॉक्स ₹ 190 में खरीदता है। अंकुर भी वहीं से 1 पैन, 2 बैग तथा 4 उपकरण बॉक्स ₹ 250 में खरीदता है।

उपरोक्त सूचनाओं के आधार पर निम्न के उत्तर दीजिए :

- (I) उपरोक्त सूचनाओं से AX = B के रूप की एक आव्यूह समीकरण लिखो।
- (II) |A| ज्ञात कीजिए।
- (III)  $A^{-1}$ ज्ञात कीजिए।

#### अथवा

(III)  $P = A^2 - 5A$  ज्ञात कीजिए ।

#### प्रकरण अध्ययन-III

38. एक ऐसा समीकरण जिसमें स्वतंत्र चरों के सापेक्ष आश्रित चर के अवकलज सम्मिलित हों, अवकलज समीकरण कहलाता है ।  $\frac{dy}{dx} = F(x, y)$  के रूप वाला अवकल समीकरण समघातीय कहलाता है यदि F(x, y) शून्य घात वाला समघातीय फलन है, जहाँ फलन F(x, y), n घात वाला समघातीय फलन कहलाता है यदि  $F(\lambda x, \lambda y) = \lambda^n F(x, y)$ । एक समघातीय अवकल समीकरण  $\frac{dy}{dx} = F(x, y) =$  $g\left(\frac{y}{x}\right)$  को हल करने के लिए हम y = vx प्रतिस्थापित करते हैं तथा चरों को अलग – अलग करते हैं । उपरोक्त के आधार पर निम्न प्रश्नों के उत्तर दीजिए :

(I) दर्शाइए कि  $(x^2 - y^2) dx + 2xy dy = 0$  एक  $\frac{dy}{dx} = g\left(\frac{y}{x}\right)$  प्रकार की समघातीय अवकल

समीकरण है ।

(II) उपरोक्त अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

65/5/1 ~~~ Page 22

Get More Learning Materials Here : 💻



🕀 www.studentbro.in



#### **Case Study-II**

37. Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹ 160. From the same shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹ 190. Also Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹ 250.

Based on the above information, answer the following questions :

- (I) Convert the given above situation into a matrix equation of the form AX = B.
- (II) Find |A|.
- (III) Find  $A^{-1}$ .
  - OR
- (III) Determine  $P = A^2 5A$ .

#### **Case Study-III**

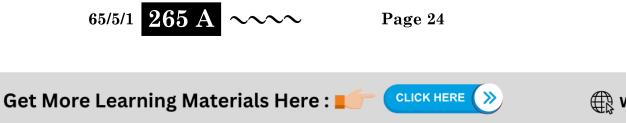
38. An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form  $\frac{dy}{dx} = F(x, y)$  is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if  $F(\lambda x, \lambda y) = \lambda^n F(x, y)$ . To solve a homogeneous differential equation of the type  $\frac{dy}{dx} = F(x, y) =$ 

$$g\left(\frac{y}{x}\right)$$
, we make the substitution  $y = vx$  and then separate the variables.

Based on the above, answer the following questions :

- (I) Show that  $(x^2 y^2) dx + 2xy dy = 0$  is a differential equation of the type  $\frac{dy}{dx} = g\left(\frac{y}{x}\right)$ .
- (II) Solve the above equation to find its general solution.

65/5/1


Page 23

Get More Learning Materials Here : 💻



🕀 www.studentbro.in

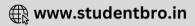






#### Marking Scheme Strictly Confidential (For Internal and Restricted use only) Senior School Certificate Examination, 2023 MATHEMATICS PAPER CODE 65/5/1

| Gener | ral Instructions: -                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | You are aware that evaluation is the most important process in the actual and correct<br>assessment of the candidates. A small mistake in evaluation may lead to serious problems<br>which may affect the future of the candidates, education system and teaching profession. To<br>avoid mistakes, it is requested that before starting evaluation, you must read and understand<br>the spot evaluation guidelines carefully.                                                       |
| 2     | "Evaluation policy is a confidential policy as it is related to the confidentiality of the                                                                                                                                                                                                                                                                                                                                                                                           |
|       | examinations conducted, Evaluation done and several other aspects. Its' leakage to<br>public in any manner could lead to derailment of the examination system and affect the<br>life and future of millions of candidates. Sharing this policy/document to anyone,<br>publishing in any magazine and printing in News Paper/Website etc may invite action<br>under various rules of the Board and IPC."                                                                              |
| 3     | Evaluation is to be done as per instructions provided in the Marking Scheme. It should not<br>be done according to one's own interpretation or any other consideration. Marking Scheme<br>should be strictly adhered to and religiously followed. <b>However, while evaluating, answers</b><br>which are based on latest information or knowledge and/or are innovative, they may be                                                                                                 |
|       | assessed for their correctness otherwise and due marks be awarded to them.                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4     | The Marking scheme carries only suggested value points for the answers<br>These are in the nature of Guidelines only and do not constitute the complete answer. The<br>students can have their own expression and if the expression is correct, the due marks should<br>be awarded accordingly.                                                                                                                                                                                      |
| 5     | The Head-Examiner must go through the first five answer books evaluated by each evaluator<br>on the first day, to ensure that evaluation has been carried out as per the instructions given<br>in the Marking Scheme. If there is any variation, the same should be zero after deliberation<br>and discussion. The remaining answer books meant for evaluation shall be given only after<br>ensuring that there is no significant variation in the marking of individual evaluators. |
| 6     | Evaluators will mark( $$ ) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right ( $$ )while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.                                                                                                                                                                                            |
| 7     | If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.                                                                                                                                                                                                                                      |
| 8     | If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.                                                                                                                                                                                                                                                                                                                                              |


1

| 9  | In Q1-Q20, if a candidate attempts the question more than once (without canceling the previous   |  |
|----|--------------------------------------------------------------------------------------------------|--|
|    | attempt), marks shall be awarded for the first attempt only and the other answer scored out      |  |
|    | with a note "Extra Question".                                                                    |  |
| 10 | In Q21-Q38, if a student has attempted an extra question, answer of the question deserving       |  |
| 11 | more marks should be retained and the other answer scored out with a note "Extra Question".      |  |
| 11 | No marks to be deducted for the cumulative effect of an error. It should be penalized only once. |  |
| 12 | A full scale of marks(example 0 to 80/70/60/50/40/30 marks as given in                           |  |
|    | Question Paper) has to be used. Please do not hesitate to award full marks if the answer         |  |
| 10 | deserves it.                                                                                     |  |
| 13 | Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours        |  |
|    | every day and evaluate 20 answer books per day in main subjects and 25 answer books per          |  |
|    | day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced     |  |
|    | syllabus and number of questions in question paper.                                              |  |
| 14 | Ensure that you do not make the following common types of errors committed by the                |  |
|    | Examiner in the past:-                                                                           |  |
|    | • Leaving answer or part thereof unassessed in an answer book.                                   |  |
|    | • Giving more marks for an answer than assigned to it.                                           |  |
|    | • Wrong totaling of marks awarded on an answer.                                                  |  |
|    | • Wrong transfer of marks from the inside pages of the answer book to the title page.            |  |
|    | • Wrong question wise totaling on the title page.                                                |  |
|    | • Wrong totaling of marks of the two columns on the title page.                                  |  |
|    | • Wrong grand total.                                                                             |  |
|    | • Marks in words and figures not tallying/not same.                                              |  |
|    | • Wrong transfer of marks from the answer book to online award list.                             |  |
|    | • Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is          |  |
|    | correctly and clearly indicated. It should merely be a line. Same is with the X for              |  |
|    | incorrect answer.)                                                                               |  |
|    | • Half or a part of answer marked correct and the rest as wrong, but no marks awarded.           |  |
| 15 | While evaluating the answer books if the answer is found to be totally incorrect, it should be   |  |
|    | marked as cross (X) and awarded zero (0)Marks.                                                   |  |
| 16 | Any un assessed portion, non-carrying over of marks to the title page, or totaling error         |  |
|    | detected by the candidate shall damage the prestige of all the personnel engaged in the          |  |
|    | evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned,   |  |
|    | it is again reiterated that the instructions be followed meticulously and judiciously.           |  |
| 17 | The Examiners should acquaint themselves with the guidelines given in the "Guidelines for        |  |
|    | spot Evaluation" before starting the actual evaluation.                                          |  |
| 18 | Every Examiner shall also ensure that all the answers are evaluated, marks carried over to       |  |
|    | the title page, correctly totaled and written in figures and words.                              |  |
| 19 | The candidates are entitled to obtain photocopy of the Answer Book on request on payment         |  |
|    | of the prescribed processing fee. All Examiners/Additional Head Examiners/Head                   |  |
|    | Examiners are once again reminded that they must ensure that evaluation is carried out           |  |
|    | strictly as per value points for each answer as given in the Marking Scheme.                     |  |

MS\_XII\_Mathematics\_041\_65/5/1\_2022-23

Get More Learning Materials Here : 📕





#### MARKING SCHEME MATHEMATICS (Subject Code–041) (PAPER CODE: 65/5/1)

| Q. No. | EXPECTED OUTCOMES/VALUE POINTS                                                                                                                                | Marks |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|        | SECTION A<br>Questions no. 1 to 18 are multiple choice questions (MCQs) and questions<br>number 19 and 20 are Assertion-Reason based questions of 1 mark each |       |
| 1.     | Let $A = \{3, 5\}$ . Then number of reflexive relations on A is                                                                                               |       |
|        | (a) 2 (b) 4                                                                                                                                                   |       |
|        | (c) 0 (d) 8                                                                                                                                                   |       |
| Sol.   | (b) 4                                                                                                                                                         | 1     |
| 2.     | $\sin\left[\frac{\pi}{3} + \sin^{-1}\left(\frac{1}{2}\right)\right] \text{ is equal to}$                                                                      |       |
|        | (a) 1<br>(b) $\frac{1}{2}$<br>(c) $\frac{1}{3}$<br>(d) $\frac{1}{4}$                                                                                          |       |
|        | (c) $\frac{1}{3}$ (d) $\frac{1}{4}$                                                                                                                           |       |
| Sol.   | (a) 1                                                                                                                                                         | 1     |
| 3.     | If for a square matrix A, $A^2 - A + I = O$ , then $A^{-1}$ equals                                                                                            |       |
|        | (a) A (b) A + I                                                                                                                                               |       |
|        | (c) $I - A$ (d) $A - I$                                                                                                                                       |       |
| Sol.   | (c) I – A                                                                                                                                                     | 1     |
| 4.     | If $A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$ , $B = \begin{bmatrix} x & 0 \\ 1 & 1 \end{bmatrix}$ and $A = B^2$ , then x equals                      |       |
|        | (a) $\pm 1$ (b) $-1$                                                                                                                                          |       |
|        | (c) 1 (d) 2                                                                                                                                                   |       |
| Sol.   | (c) 1                                                                                                                                                         | 1     |

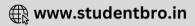
| 5.   | If $\begin{vmatrix} \alpha & 3 & 4 \\ 1 & 2 & 1 \\ 1 & 4 & 1 \end{vmatrix} = 0$ , then the value of $\alpha$ is |   |
|------|-----------------------------------------------------------------------------------------------------------------|---|
|      | (a) 1 (b) 2                                                                                                     |   |
|      | (c) 3 (d) 4                                                                                                     |   |
| Sol. | (d) 4                                                                                                           | 1 |
| 6.   | The derivative of $x^{2x}$ w.r.t. x is                                                                          |   |
|      | (a) $x^{2x-1}$ (b) $2x^{2x}\log x$                                                                              |   |
|      | (c) $2x^{2x}(1 + \log x)$ (d) $2x^{2x}(1 - \log x)$                                                             |   |
| Sol. | (c) $2x^{2x}(1 + \log x)$                                                                                       | 1 |
| 7.   | The function $f(x) = [x]$ , where $[x]$ denotes the greatest integer less than or equal to x, is continuous at  |   |
|      | (a) $x = 1$ (b) $x = 1.5$                                                                                       |   |
|      | (c) $x = -2$ (d) $x = 4$                                                                                        |   |
| Sol. | (b) $x = 1.5$                                                                                                   | 1 |
| 8.   | If $x = A \cos 4t + B \sin 4t$ , then $\frac{d^2x}{dt^2}$ is equal to                                           |   |
|      | (a) x (b) -x                                                                                                    |   |
|      | (c) $16x$ (d) $-16x$                                                                                            |   |
| Sol. | (d) <b>-16</b> <i>x</i>                                                                                         | 1 |
| 9.   | The interval in which the function $f(x) = 2x^3 + 9x^2 + 12x - 1$ is decreasing, is                             |   |
|      | (a) $(-1, \infty)$ (b) $(-2, -1)$                                                                               |   |
|      | (c) $(-\infty, -2)$ (d) $[-1, 1]$                                                                               |   |
| Sol. | (b) (-2, -1)                                                                                                    | 1 |
| 10.  | $\int \frac{\sec x}{\sec x - \tan x}  \mathrm{d}x  \mathrm{equals}$                                             |   |
|      | (a) $\sec x - \tan x + c$ (b) $\sec x + \tan x + c$                                                             |   |
|      | (c) $\tan x - \sec x + c$ (d) $-(\sec x + \tan x) + c$                                                          |   |
| Sol. | (b) sec $x + \tan x + c$<br>Mathematics_041_65/5/1_2022-23                                                      | 1 |

Get More Learning Materials Here : 💵

CLICK HERE

# r www.studentbro.in

| 11.  |                                                                                                                                                                                                                                               |   |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 11.  | $\int_{-1}^{1} \frac{ x-2 }{ x-2 }  \mathrm{d}x,  x \neq 2 \text{ का मान } \mathbf{\hat{e}}:$                                                                                                                                                 |   |
|      | $\int_{-1}^{1} x - 2$                                                                                                                                                                                                                         |   |
|      | (a) 1 (b) -1                                                                                                                                                                                                                                  |   |
|      | (a) 1 (b) $-1$<br>(c) 2 (d) $-2$                                                                                                                                                                                                              |   |
| Sol. | (d) - <b>2</b>                                                                                                                                                                                                                                | 1 |
|      |                                                                                                                                                                                                                                               | _ |
| 12.  | The sum of the order and the degree of the differential equation $1 \left( \left( 1 \right)^{3} \right)$                                                                                                                                      |   |
|      | $\frac{\mathrm{d}}{\mathrm{d}x}\left(\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3\right)$ is                                                                                                                                                |   |
|      | (a) 2 (b) 3                                                                                                                                                                                                                                   |   |
|      | (c) 5 (d) 0                                                                                                                                                                                                                                   |   |
| Sol. | Due to error in the question, 1 mark should be awarded to each student who                                                                                                                                                                    | 1 |
| 13.  | attempted the question<br>Two vectors $\overrightarrow{a} = a_1 \overrightarrow{i} + a_2 \overrightarrow{j} + a_3 \overrightarrow{k}$ and $\overrightarrow{b} = b_1 \overrightarrow{i} + b_2 \overrightarrow{j} + b_3 \overrightarrow{k}$ are |   |
| 13.  | collinear if                                                                                                                                                                                                                                  |   |
|      | (a) $a_1b_1 + a_2b_2 + a_3b_3 = 0$<br>(b) $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$<br>(c) $a_1 = b_1, a_2 = b_2, a_3 = b_3$<br>(d) $a_1 + a_2 + a_3 = b_1 + b_2 + b_3$                                                           |   |
|      | (c) $a_1 = b_1, a_2 = b_2, a_3 = b_3$ (d) $a_1 + a_2 + a_3 = b_1 + b_2 + b_3$                                                                                                                                                                 |   |
| Sol. | (b) $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$                                                                                                                                                                                     | 1 |
|      | $b_1$ $b_2$ $b_3$                                                                                                                                                                                                                             |   |
| 14.  | The magnitude of the vector $6\hat{i} - 2\hat{j} + 3\hat{k}$ is                                                                                                                                                                               |   |
|      | (a) 1 (b) 5                                                                                                                                                                                                                                   |   |
|      | (c) 7 (d) 12                                                                                                                                                                                                                                  |   |
| Sol. | (c) 7                                                                                                                                                                                                                                         | 1 |
| 15.  | If a line makes angles of 90°, $135^{\circ}$ and $45^{\circ}$ with the x, y and z axes                                                                                                                                                        |   |
|      | respectively, then its direction cosines are                                                                                                                                                                                                  |   |
|      | (a) $0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$ (b) $-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}$                                                                                                                                             |   |
|      | (c) $\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}$ (d) $0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$                                                                                                                                              |   |
| Sol. | (a) $0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$                                                                                                                                                                                              | 1 |
| L    |                                                                                                                                                                                                                                               |   |


5

| 16.  | The angle between the lines $2x = 3y = -z$ and $6x = -y = -4z$ is                                                                                                                    |   |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | (a) $0^{\circ}$ (b) $30^{\circ}$                                                                                                                                                     |   |
|      | (c) $45^{\circ}$ (d) $90^{\circ}$                                                                                                                                                    |   |
| Sol. | (d) <b>90</b> °                                                                                                                                                                      | 1 |
| 17.  | If for any two events A and B, $P(A) = \frac{4}{5}$ and $P(A \cap B) = \frac{7}{10}$ , then $P(B A)$ is                                                                              |   |
|      | equal to                                                                                                                                                                             |   |
|      | (a) $\frac{1}{10}$ (b) $\frac{1}{8}$                                                                                                                                                 |   |
|      | (c) $\frac{7}{8}$ (d) $\frac{17}{20}$                                                                                                                                                |   |
|      | 8 20                                                                                                                                                                                 |   |
| Sol. | $(c)\frac{7}{8}$                                                                                                                                                                     | 1 |
| 18.  | Five fair coins are tossed simultaneously. The probability of the events                                                                                                             |   |
|      | that atleast one head comes up is                                                                                                                                                    |   |
|      | (a) $\frac{27}{32}$ (b) $\frac{5}{32}$                                                                                                                                               |   |
|      | (c) $\frac{31}{32}$ (d) $\frac{1}{32}$                                                                                                                                               |   |
| Sol. | $(c)\frac{31}{32}$                                                                                                                                                                   | 1 |
|      | Assertion – Reason Based Questions                                                                                                                                                   |   |
|      | In the following questions <b>19</b> and <b>20</b> , a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices : |   |
|      | (a) Both (A) and (R) are true and (R) is the correct explanation of (A).                                                                                                             |   |
|      | (b) Both (A) and (R) are true, but (R) is not the correct explanation of (A).                                                                                                        |   |
|      | (c) (A) is true and (R) is false.                                                                                                                                                    |   |
|      | (d) (A) is false, but (R) is true.                                                                                                                                                   |   |
| 19.  | Assertion (A) : Two coins are tossed simultaneously. The probability of                                                                                                              |   |
|      | getting two heads, if it is known that at least one head comes up, is $\frac{1}{3}$ .                                                                                                |   |
|      | <b>Reason (R) :</b> Let E and F be two events with a random experiment, then<br>$P(F/E) = \frac{P(E \cap F)}{P(E)}.$                                                                 |   |

MS\_XII\_Mathematics\_041\_65/5/1\_2022-23

Get More Learning Materials Here : 📕





| Sol.   | (a) Both (A) and (R) are true and (R) is the correct explanation of (A)                                                                          | 1              |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 20.    | Assertion (A): $\int_{2}^{8} \frac{\sqrt{10-x}}{\sqrt{x}+\sqrt{10-x}}  dx = 3$                                                                   |                |
|        | <b>Reason (R)</b> : $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx$                                                                        |                |
| Sol.   | (a) Both (A) and (R) are true and (R) is the correct explanation of (A)                                                                          | 1              |
|        | SECTION B<br>This section comprises very short answer (VSA) type questions of 2 marks<br>each.                                                   |                |
| 21.    | Write the domain and range (principle value branch) of the following functions:<br>f(x) = t + x = 1                                              |                |
| Sol.   | $f(x) = \tan^{-1} x$<br>Domain = R; Range = $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$                                                         | 1+1            |
| 22(a). | If $f(x) = \begin{cases} x^2, & \text{if } x \ge 1 \\ x, & \text{if } x < 1 \end{cases}$ then show that f is not differentiable at $x = 1$ .     |                |
| Sol.   | Here                                                                                                                                             |                |
|        | RHD = $\lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = 2$ $\lim_{h \to 0} \left[ f(1-h) - f(1) \right] = 1$                                             | $1\frac{1}{2}$ |
|        | $LHD = \lim_{h \to 0} \left[ \frac{f(1-h) - f(1)}{-h} \right] = 1$                                                                               |                |
|        | Since RHD ≠LHD                                                                                                                                   | 1              |
|        | $\therefore$ f is not differentiable at x = 1.                                                                                                   | $\frac{1}{2}$  |
| 22(b). | Find the value(s) of ' $\lambda$ ', if the function                                                                                              |                |
|        | $f(x) = \begin{cases} \frac{\sin^2 \lambda x}{x^2}, & \text{if } x \neq 0 \text{ is continuous at } x = 0. \\ 1, & \text{if } x = 0 \end{cases}$ |                |

Get More Learning Materials Here : 💶

7

| Sol.   | $\lim_{x \to 0} f(x) = \lim_{x \to 0} \left( \frac{\sin^2 \lambda x}{x^2} \right) = \lim_{x \to 0} \left[ \frac{\sin^2 \lambda x}{(\lambda x)^2} \cdot \lambda^2 \right] = \lambda^2$<br>Since f(x) is continuous at x = 0<br>$\lim_{x \to 0} f(x) = f(0)$ $\Rightarrow \lambda^2 = 1 \Rightarrow \lambda = \pm 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{1}{\frac{1}{2}}$                                   |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 23.    | Sketch the region bounded by the lines $2x + y = 8$ , $y = 2$ , $y = 4$ and the y-axis. Hence, obtain its area using integration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           |
| Sol.   | A = (0, 8) $2x + y = 8$ $7 + 6$ $B = (0, 4)$ $F + 7 + 6$ $B = (0, 4)$ $F + 7 + 6$ $C = (0, 2)$ $D = (4, 0)$ $B = (4, 0)$ $B = (4, 0)$ $B = (4, 0)$ $C = (4, 0)$ | $\frac{\frac{1}{2} \text{ for }}{\text{correct }}$ figure |
|        | Required area = $\int_{2}^{4} \frac{1}{2} (8 - y) dy$<br>= $\frac{1}{2} \left  8y - \frac{y^{2}}{2} \right _{2}^{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{1}{2}$ $\frac{1}{2}$                               |
|        | = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{1}{2}$                                             |
| 24(a). | If the vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ are such that $ \overrightarrow{a}  = 3$ , $ \overrightarrow{b}  = \frac{2}{3}$ and $\overrightarrow{a} \times \overrightarrow{b}$ is a unit vector, then find the angle between $\overrightarrow{a}$ and $\overrightarrow{b}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |

MS\_XII\_Mathematics\_041\_65/5/1\_2022-23

### Get More Learning Materials Here : 📕



## r www.studentbro.in

| Sol.   | Let $\theta$ be the angle between $\overrightarrow{a}$ and $\overrightarrow{b}$                                                                                                 |                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|        | Since $\vec{a} \times \vec{b}$ is a unit vector, we have $ \vec{a} \times \vec{b}  = 1$                                                                                         |                |
|        | $\Rightarrow  \vec{a}   \vec{b}  \sin \theta = 1$                                                                                                                               | 1              |
|        | $\Rightarrow \sin \theta = \frac{1}{2}, \text{ or } \theta = 30^{\circ} (\text{ or } \frac{\pi}{6})$                                                                            | 1              |
| 24(b). | Find the area of a parallelogram whose adjacent sides are determined<br>by the vectors $\vec{a} = \hat{i} - \hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$ . |                |
| Sol.   | Here                                                                                                                                                                            |                |
|        | $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 3 \\ 2 & -7 & 1 \end{vmatrix} = 20\hat{i} + 5\hat{j} - 5\hat{k}$                              | $1\frac{1}{2}$ |
|        | $\Rightarrow \left  \vec{a} \times \vec{b} \right  = \sqrt{400 + 25 + 25} = \sqrt{450}$                                                                                         |                |
|        | Area of parallelogram = $ \vec{a} \times \vec{b}  = \sqrt{450} = 15\sqrt{2}$                                                                                                    | $\frac{1}{2}$  |
| 25.    | Find the vector and the cartesian equations of a line that passes through the point A(1, 2, -1) and parallel to the line $5x - 25 = 14 - 7y = 35z$ .                            |                |
| Sol.   | The given line is                                                                                                                                                               |                |
|        | $\frac{x-5}{\frac{1}{5}} = \frac{y-2}{-\frac{1}{7}} = \frac{z}{\frac{1}{35}}, \text{ or } \frac{x-5}{7} = \frac{y-2}{-5} = \frac{z}{1}$                                         | 1              |
|        | So, the required vector equation of the line passing through $(1,2,-1)$ is                                                                                                      |                |
|        | $\vec{r} = (\hat{\imath} + 2\hat{\jmath} - \hat{k}) + \lambda(7\hat{\imath} - 5\hat{\jmath} + \hat{k})$                                                                         | $\frac{1}{2}$  |
|        |                                                                                                                                                                                 | 9              |

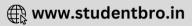
|          | Cartesian equation of the line is                                                                                                                                                                                                 |               |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|          | $\frac{x-1}{7} = \frac{y-2}{-5} = \frac{z+1}{1}$                                                                                                                                                                                  | $\frac{1}{2}$ |
|          | SECTION C<br>This section comprises of Short Answer (SA) type questions of 3 marks<br>each.                                                                                                                                       |               |
| 26.      | If $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$ , then show that $A^3 - 23A - 40I = O$ .                                                                                                              |               |
| Sol.     | Getting $A^2 = \begin{bmatrix} 19 & 4 & 8 \\ 1 & 12 & 8 \\ 14 & 6 & 15 \end{bmatrix}$                                                                                                                                             | 1             |
|          | Getting $A^3 = \begin{bmatrix} 63 & 46 & 69 \\ 69 & -6 & 23 \\ 92 & 46 & 63 \end{bmatrix}$                                                                                                                                        | 1             |
|          | $A^3 - 23A - 40I =$                                                                                                                                                                                                               |               |
|          | $\begin{bmatrix} 63 & 46 & 69 \\ 69 & -6 & 23 \\ 92 & 46 & 63 \end{bmatrix} - \begin{bmatrix} 23 & 46 & 69 \\ 69 & -46 & 23 \\ 92 & 46 & 23 \end{bmatrix} - \begin{bmatrix} 40 & 0 & 0 \\ 0 & 40 & 0 \\ 0 & 0 & 40 \end{bmatrix}$ | $\frac{1}{2}$ |
|          | $= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 0$                                                                                                                                                         | $\frac{1}{2}$ |
| 27(a).   | Differentiate $\sec^{-1}\left(\frac{1}{\sqrt{1-x^2}}\right)$ w.r.t. $\sin^{-1}\left(2x\sqrt{1-x^2}\right)$ .                                                                                                                      |               |
| Sol.     | Let $x = \sin \theta$ . Then                                                                                                                                                                                                      |               |
|          | $U = \sec^{-1}\left(\frac{1}{\sqrt{1-\sin^2 \theta}}\right) = \sec^{-1}\left(\frac{1}{\cos \theta}\right)$                                                                                                                        |               |
| MS XII I | Uathematics_041_65/5/1_2022-23                                                                                                                                                                                                    |               |

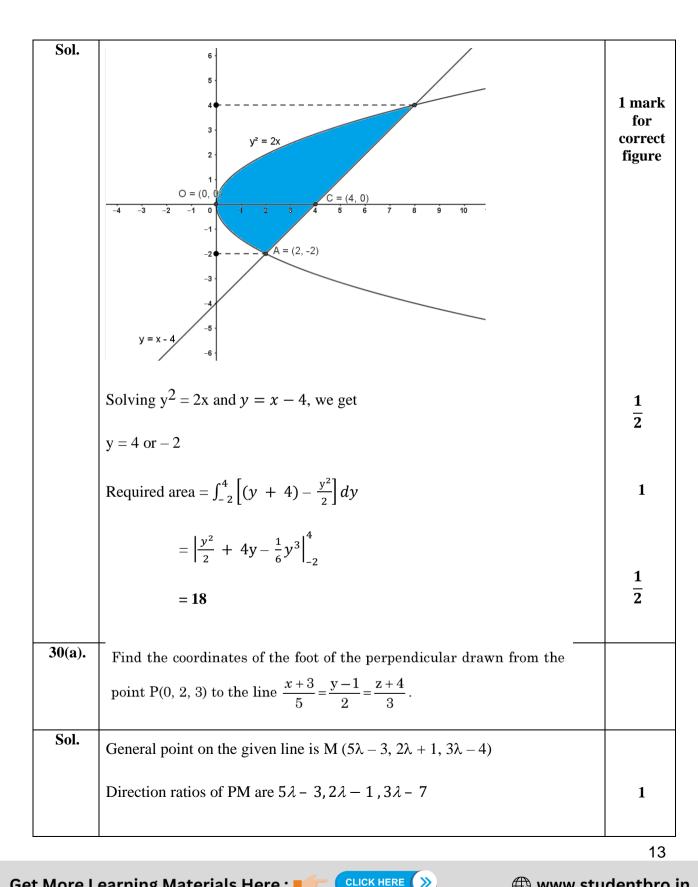
Get More Learning Materials Here : 🗾

CLICK HERE

# r www.studentbro.in

|                | $= \sec^{-1}(\sec \theta) = \theta = \sin^{-1}x$                                                                                | 1              |
|----------------|---------------------------------------------------------------------------------------------------------------------------------|----------------|
|                | $\Rightarrow \frac{dU}{dx} = \frac{1}{\sqrt{1 - x^2}}$                                                                          |                |
|                | and V = $\sin^{-1} \{2 \sin \theta \sqrt{1 - \sin^2 \theta} \}$                                                                 |                |
|                | $=\sin^{-1} \left[2\sin\theta\cos\theta\right] = 2\theta = 2\sin^{-1}x$                                                         |                |
|                | $\Rightarrow \frac{dV}{dx} = \frac{2}{\sqrt{1-x^2}}$                                                                            | 1              |
|                | $\Rightarrow \frac{dU}{dV} = \frac{dU/dx}{dV/dx} = \frac{1}{2}$                                                                 | 1              |
|                | Note: If the substitution is made as $x = \cos \theta$ , answer will be $-\frac{1}{2}$                                          |                |
| 27(b).         | If y = tan x + sec x, then prove that $\frac{d^2y}{dx^2} = \frac{\cos x}{(1 - \sin x)^2}$ .                                     |                |
| Sol.           | $y = \tan x + \sec x = \frac{\sin x + 1}{\cos x}$                                                                               |                |
|                | $\Rightarrow \frac{dy}{dx} = \frac{\cos x (\cos x) + (\sin x + 1) \sin x}{\cos^2 x}$                                            |                |
|                | $= \frac{\cos^2 x + \sin^2 x + \sin x}{\cos^2 x} = \frac{1 + \sin x}{1 - \sin^2 x} = \frac{1}{1 - \sin x}$                      | $1\frac{1}{2}$ |
|                | $\Rightarrow \frac{d^2 y}{dx^2} = \frac{(1 - \sin x) \cdot 0 - 1 (0 - \cos x)}{(1 - \sin x)^2} = \frac{\cos x}{(1 - \sin x)^2}$ | $1\frac{1}{2}$ |
| <b>28</b> (a). | Evaluate : $\int_{0}^{2\pi} \frac{1}{1 + e^{\sin x}} dx$                                                                        |                |


11


| Sol.   | Let I = $\int_0^{2\pi} \frac{1}{1 + e^{\sin x}} dx = \int_0^{2\pi} \frac{1}{1 + e^{\sin (2\pi - x)}} dx$                             | 1               |
|--------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|        | $= \int_0^{2\pi} \frac{1}{1 + e^{-\sin x}} dx = \int_0^{2\pi} \frac{e^{\sin x}}{e^{\sin x} + 1} dx$                                  | 1               |
|        | $\Rightarrow 2I = \int_{0}^{2\pi} \frac{e^{\sin x} + 1}{e^{\sin x} + 1} dx = \int_{0}^{2\pi} 1 \cdot dx = 2\pi$                      | $\frac{1}{2}$   |
|        | $\Rightarrow$ I = $\pi$                                                                                                              | $\frac{1}{2}$   |
| 28(b). | Find : $\int \frac{x^4}{(x-1)(x^2+1)} dx$                                                                                            |                 |
| Sol.   | $I = \int \frac{x^4}{(x-1)(x^2+1)} dx = \int \left[ x+1 + \frac{1}{(x-1)(x^2+1)} \right] dx$                                         | 1               |
|        | $= \frac{x^2}{2} + x + \int \left[\frac{1}{2(x-1)} - \frac{1}{2}\frac{(x+1)}{(x^2+1)}\right] dx$ (Using partial functions)           | $\frac{1}{2}+1$ |
|        | (Using partial fractions)<br>= $\frac{x^2}{2} + x + \frac{1}{2} \log  x-1  - \frac{1}{4} \log  x^2+1  - \frac{1}{2} \tan^{-1} x + C$ | $\frac{1}{2}$   |
| 29.    | Find the area of the following region using integration :                                                                            |                 |
|        | $\{(x, y) : y^2 \le 2x \text{ and } y \ge x - 4\}$                                                                                   |                 |

MS\_XII\_Mathematics\_041\_65/5/1\_2022-23

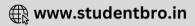
### Get More Learning Materials Here : 📕







>>>


Get More Learning Materials Here :

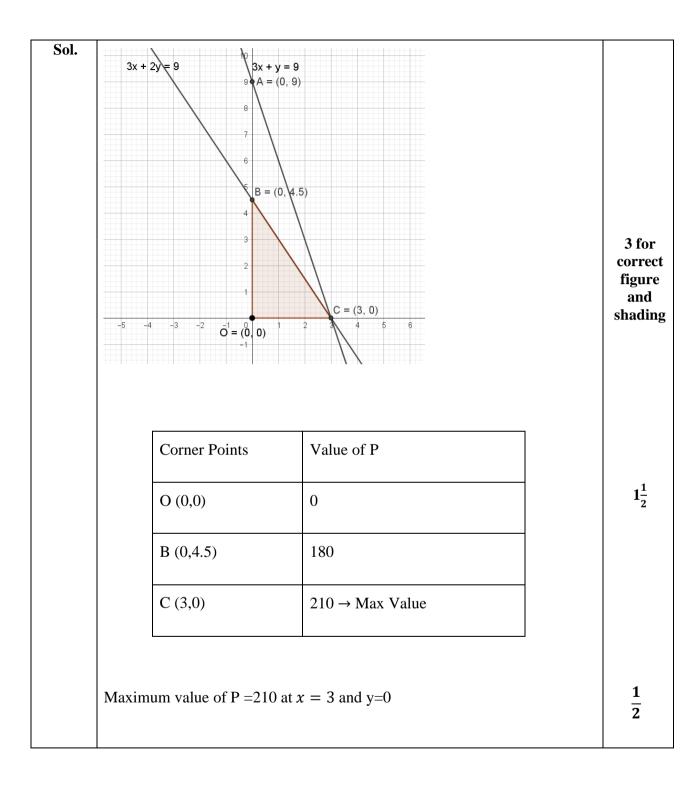
|               | If this point is the foot of the perpendicular from the point P $(0, 2, 3)$ , then PM is perpendicular to the line. Thus,                                                                                                          |               |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|               | $(5\lambda - 3).5 + (2\lambda - 1).2 + (3\lambda - 7).3 = 0$                                                                                                                                                                       | 1             |
|               | $\Rightarrow \lambda = 1$                                                                                                                                                                                                          |               |
|               | Hence co-ordinates of M are (2, 3, -1)                                                                                                                                                                                             | 1             |
| <b>30(b).</b> | Three vectors $\overrightarrow{a}$ , $\overrightarrow{b}$ and $\overrightarrow{c}$ satisfy the condition $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ .                                     |               |
|               | Evaluate the quantity $\mu = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$ , if $ \overrightarrow{a}  = 3$ ,                            |               |
|               | $ \overrightarrow{b}  = 4$ and $ \overrightarrow{c}  = 2$ .                                                                                                                                                                        |               |
| Sol.          | $(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})^{2} = 0$<br>$\Rightarrow \overrightarrow{a}^{2} + \overrightarrow{b}^{2} + \overrightarrow{c}^{2} + 2(\mu) = 0$                                                    | 1             |
|               | $\Rightarrow \overrightarrow{a}^{2} + \overrightarrow{b}^{2} + \overrightarrow{c}^{2} + 2(\mu) = 0$                                                                                                                                | 1             |
|               | $\Rightarrow \mu = -\frac{29}{2}$                                                                                                                                                                                                  | 1             |
| 31.           | Find the distance between the lines :                                                                                                                                                                                              |               |
|               | $\overrightarrow{\mathbf{r}} = (\overrightarrow{\mathbf{i}} + 2\overrightarrow{\mathbf{j}} - 4\overrightarrow{\mathbf{k}}) + \lambda(2\overrightarrow{\mathbf{i}} + 3\overrightarrow{\mathbf{j}} + 6\overrightarrow{\mathbf{k}});$ |               |
|               | $\overrightarrow{\mathbf{r}} = (3\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - 5\hat{\mathbf{k}}) + \mu(4\hat{\mathbf{i}} + 6\hat{\mathbf{j}} + 12\hat{\mathbf{k}})$                                                                      |               |
| Sol.          | Here                                                                                                                                                                                                                               |               |
|               | $\vec{a}_1 = \hat{i} + 2\hat{j} - 4\hat{k}, \vec{b}_1 = 2\hat{i} + 3\hat{j} + 6\hat{k}$                                                                                                                                            |               |
|               | $\overrightarrow{a_2} = 3\overrightarrow{i} + 3\overrightarrow{j} - 5\overrightarrow{k}$ , $\overrightarrow{b_2} = 4\overrightarrow{i} + 6\overrightarrow{j} + 12\overrightarrow{k}$                                               |               |
|               | Here, $\overrightarrow{b}_1$ and $\overrightarrow{b}_2$ are parallel vectors.                                                                                                                                                      | $\frac{1}{2}$ |

CLICK HERE

MS\_XII\_Mathematics\_041\_65/5/1\_2022-23

### Get More Learning Materials Here : 📕




|               | $\overrightarrow{a_2} - \overrightarrow{a_1} = 2\hat{\imath} + \hat{\jmath} - \hat{k}, \qquad \overrightarrow{b} = 2\hat{\imath} + 3\hat{\jmath} + 6\hat{k}$            | $\frac{1}{2}$ |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|               | Thus, $(\vec{a_2} - \vec{a_1}) \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -1 \\ 2 & 3 & 6 \end{vmatrix} = 9\hat{i} - 14\hat{j} + 4\hat{k}$ | 1             |
|               | Distance between the lines = $\left  \frac{(\vec{a_2} - \vec{a_1}) \times \vec{b}}{ \vec{b} } \right $                                                                  |               |
|               | $=\frac{\sqrt{81+196+16}}{\sqrt{4+9+36}}$                                                                                                                               |               |
|               | $=\frac{\sqrt{293}}{7}$ units.                                                                                                                                          | 1             |
|               | SECTION D<br>This section comprises of Long Answer (LA) type questions of 5 marks<br>each.                                                                              |               |
| <b>32(a).</b> | The median of an equilateral triangle is increasing at the rate of                                                                                                      |               |
|               | $2\sqrt{3}$ cm/s. Find the rate at which its side is increasing.                                                                                                        |               |
| Sol.          | In an equilateral triangle, median is same as altitude. Let 'h' denote the length of the median (or altitude) and 'x' be the side of $\Delta$ ABC.                      | 1             |
|               | B C C                                                                                                                                                                   |               |
|               | Then, $h = \frac{\sqrt{3}}{2}x$ or $x = \frac{2h}{\sqrt{3}}$ (i)                                                                                                        | 2             |

|               | It is given that $\frac{dh}{dt} = 2\sqrt{3}$ So, by (i) we have                      | 1             |
|---------------|--------------------------------------------------------------------------------------|---------------|
|               | $\frac{dx}{dt} = \frac{2}{\sqrt{3}} \frac{dh}{dt} \Longrightarrow \frac{dx}{dt} = 4$ | 1             |
|               | Thus, the side of $\triangle$ ABC is increasing at the rate of 4 cm/sec.             |               |
| <b>32(b).</b> | Sum of two numbers is 5. If the sum of the cubes of these numbers is                 |               |
|               | least, then find the sum of the squares of these numbers.                            |               |
| Sol.          | Let the two numbers be x and y. Then, $x + y = 5$ or $y = 5 - x$                     | $\frac{1}{2}$ |
|               | Let S denote the sum of the cubes of these numbers. Then                             |               |
|               | $S = x^3 + y^3 = x^3 + (5 - x)^3$                                                    | 1             |
|               | $\frac{ds}{dx} = 3x^2 - 3(5 - x)^2 = 15(2x - 5)$                                     | 1             |
|               | Now $\frac{dS}{dx} = 0$ , gives $x = \frac{5}{2}$                                    | $\frac{1}{2}$ |
|               | Showing S is minimum at $x = \frac{5}{2}$                                            | 1             |
|               | So, the two numbers are $\frac{5}{2}$ and $\frac{5}{2}$                              |               |
|               | $\Rightarrow x^2 + y^2 = \frac{25}{4} + \frac{25}{4} = \frac{25}{2}$                 | 1             |
| 33.           | Evaluate : $\int_{0}^{\frac{\pi}{2}} \sin 2x \tan^{-1} (\sin x) dx$                  |               |
| Sol.          | Let I = $\int_{0}^{\pi/2} \sin 2x \tan^{-1} (\sin x) dx.$                            |               |
|               |                                                                                      |               |

### Get More Learning Materials Here : 📕

# r www.studentbro.in

|     | $= \int_{0}^{\pi/2} 2\sin x \cos x \tan^{-1} (\sin x) dx$                                                                   | $\frac{1}{2}$ |
|-----|-----------------------------------------------------------------------------------------------------------------------------|---------------|
|     | 0<br>Put sin $x = t$ so that $\cos x  dx = dt$                                                                              | $\frac{1}{2}$ |
|     | Thus, I = $2\int_{0}^{1} t \tan^{-1} t dt$                                                                                  | $\frac{1}{2}$ |
|     | $=2\left[\left \frac{t^{2}}{2} \tan^{-1} t\right _{0}^{1} - \int_{0}^{1} \frac{1}{1+t^{2}} \cdot \frac{t^{2}}{2} dt\right]$ | 1             |
|     | $= 2 \cdot \frac{1}{2} \cdot \frac{\pi}{4} - \int_{0}^{1} \frac{t^2}{1+t^2} dt$                                             |               |
|     | $=\frac{\pi}{4} - \int_0^1 \left[1 - \frac{1}{1+t^2}\right] dt$                                                             | 1             |
|     | $=\frac{\pi}{4} -  t _{0}^{1} +  \tan^{-1}t _{0}^{1}$                                                                       | 1             |
|     | $=\frac{\pi}{4}-1+\frac{\pi}{4}$                                                                                            |               |
|     | $=\frac{\pi}{2}-1$                                                                                                          | $\frac{1}{2}$ |
| 34. | Solve the following Linear Programming Problem graphically :                                                                |               |
|     | Maximize : $P = 70x + 40y$                                                                                                  |               |
|     | subject to : $3x + 2y \le 9$ ,                                                                                              |               |
|     | $3x + y \le 9,$                                                                                                             |               |
|     | $x \ge 0, y \ge 0$                                                                                                          |               |



#### Get More Learning Materials Here : 💶

| <b>35(a).</b> | In answering a question on a multiple choice test, a student either                                                                                    |               |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|               | knows the answer or guesses. Let $\frac{3}{5}$ be the probability that he knows                                                                        |               |
|               | the answer and $\frac{2}{5}$ be the probability that he guesses. Assuming that                                                                         |               |
|               | a student who guesses at the answer will be correct with probability                                                                                   |               |
|               | $\frac{1}{3}$ . What is the probability that the student knows the answer, given                                                                       |               |
|               | that he answered it correctly ?                                                                                                                        |               |
| Sol.          | Let events A, B and E be defined as:                                                                                                                   |               |
|               | A : Student knows the answer                                                                                                                           | 1             |
|               | B : Student guesses the answer                                                                                                                         | 1             |
|               | E : student answered correctly                                                                                                                         |               |
|               | $P(A) = \frac{3}{5}, P(B) = \frac{2}{5}$                                                                                                               | $\frac{1}{2}$ |
|               | Here, $P\left(\frac{E}{A}\right) = 1$ and $P\left(\frac{E}{B}\right) = \frac{1}{3}$                                                                    | 1             |
|               | By Bayes' Theorem                                                                                                                                      |               |
|               | $P\left(\frac{A}{E}\right) = \frac{P(A) \cdot P\left(\frac{E}{A}\right)}{P(A) \cdot P\left(\frac{E}{A}\right) + P(B) \cdot P\left(\frac{E}{B}\right)}$ |               |
|               |                                                                                                                                                        |               |
|               |                                                                                                                                                        |               |
|               |                                                                                                                                                        |               |
| L             | 1                                                                                                                                                      |               |

|        | $=\frac{\frac{3}{5}\times 1}{\left(\frac{3}{5}\times 1\right)+\left(\frac{2}{5}\times \frac{1}{3}\right)}$                                                                                                                                       | $1\frac{1}{2}$ |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|        | $=\frac{9}{11}$                                                                                                                                                                                                                                  | 1              |
| 35(b). | A box contains 10 tickets, 2 of which carry a prize of $\gtrless$ 8 each, 5 of which carry a prize of $\gtrless$ 4 each, and remaining 3 carry a prize of $\gtrless$ 2 each. If one ticket is drawn at random, find the mean value of the prize. |                |
| Sol.   | Let X denote the prize value.<br>Here X can take values of 8, 4 and 2.                                                                                                                                                                           | 1              |
|        | $P(X = 8) = \frac{2}{10}, \text{ or } \frac{1}{5}$ $P(X = 4) = \frac{5}{10}, \text{ or } \frac{1}{2}$                                                                                                                                            |                |
|        | $P(X=2) = \frac{3}{10}$                                                                                                                                                                                                                          |                |
|        | X     8     4     2       P(X) $\frac{1}{5}$ $\frac{1}{2}$ $\frac{3}{10}$ XP(X) $\frac{8}{5}$ $\frac{4}{2}$ $\frac{6}{10}$                                                                                                                       | 3              |
|        | Hence, Mean value of X = $\sum X P(X) = \frac{8}{5} + 2 + \frac{6}{10}$                                                                                                                                                                          |                |

|      | $=\frac{42}{10}$ or $\gtrless 4.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | SECTION E<br>This section comprises of 3 case-study based questions of 4 marks each.                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 36.  | An organization conducted bike race under two different categories – Boys<br>and Girls. There were 28 participants in all. Among all of them, finally<br>three from category 1 and two from category 2 were selected for the final<br>race. Ravi forms two sets B and G with these participants for his college<br>project.<br>Let $B = \{b_1, b_2, b_3\}$ and $G = \{g_1, g_2\}$ , where B represents the set of Boys<br>selected and G the set of Girls selected for the final race. |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|      | <ul> <li>Based on the above information, answer the following questions :</li> <li>(I) How many relations are possible from B to G?</li> <li>(II) Among all the possible relations from B to G, how many functions can be formed from B to G?</li> </ul>                                                                                                                                                                                                                               |   |
|      | (III) Let $R : B \rightarrow B$ be defined by $R = \{(x, y) : x \text{ and } y \text{ are students of the same sex}\}$ . Check if R is an equivalence relation.<br>OR                                                                                                                                                                                                                                                                                                                  |   |
|      | (III) A function $f: B \rightarrow G$ be defined by $f = \{(b_1, g_1), (b_2, g_2), (b_3, g_1)\}$ .                                                                                                                                                                                                                                                                                                                                                                                     |   |
|      | Check if f is bijective. Justify your answer.                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| Sol. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|      | (I) Number of relations $= 2^6 = 64$                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 |
|      | (II) Number of possible functions = $2^3 = 8$                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 |
|      | (III) R is an equivalence relation as it is reflexive, symmetric and transitive                                                                                                                                                                                                                                                                                                                                                                                                        | 2 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |

|      | OR                                                                                                                                                                                                                                                   |   |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      |                                                                                                                                                                                                                                                      |   |
|      | Since $f$ is not one-one function                                                                                                                                                                                                                    | 1 |
|      | $\therefore f$ is not bijective                                                                                                                                                                                                                      | 1 |
| 37.  | Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹ 160. From the same shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹ 190. Also Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹ 250. |   |
|      | Based on the above information, answer the following questions :                                                                                                                                                                                     |   |
|      | <ul> <li>(I) Convert the given above situation into a matrix equation of the form<br/>AX = B.</li> </ul>                                                                                                                                             |   |
|      | (II) Find  A .                                                                                                                                                                                                                                       |   |
|      | (III) Find $A^{-1}$ .                                                                                                                                                                                                                                |   |
|      | OR                                                                                                                                                                                                                                                   |   |
|      | (III) Determine $P = A^2 - 5A$ .                                                                                                                                                                                                                     |   |
|      |                                                                                                                                                                                                                                                      |   |
| Sol. | (I) Matrix equation is $AX = B$ , where                                                                                                                                                                                                              |   |
|      | $A = \begin{bmatrix} 5 & 3 & 1 \\ 2 & 1 & 3 \\ 1 & 2 & 4 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, B = \begin{bmatrix} 160 \\ 190 \\ 250 \end{bmatrix}$                                                                          | 1 |
|      | where x is the number of pens bought, y the number of bags and z the number of instrument boxes.                                                                                                                                                     |   |
|      | (II) $ A  = 5(4-6) - 3(8-3) + 1(4-1) = -22$                                                                                                                                                                                                          | 1 |
|      | (III) adj (A) = $\begin{bmatrix} -2 & -5 & 3 \\ -10 & 19 & -7 \\ 8 & -13 & -1 \end{bmatrix}' = \begin{bmatrix} -2 & -10 & 8 \\ -5 & 19 & -13 \\ 3 & -7 & -1 \end{bmatrix}$                                                                           | 1 |
|      |                                                                                                                                                                                                                                                      |   |
|      |                                                                                                                                                                                                                                                      |   |

## Get More Learning Materials Here : 📕



## Regional www.studentbro.in

|      | $\Rightarrow A^{-1} = \frac{1}{(-22)} \begin{bmatrix} -2 & -10 & 8\\ -5 & 19 & -13\\ 3 & -7 & -1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1               |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|      | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
|      | $P = A^{2} - 5A = \begin{bmatrix} 32 & 20 & 18\\ 15 & 13 & 17\\ 13 & 13 & 23 \end{bmatrix} - \begin{bmatrix} 25 & 15 & 5\\ 10 & 5 & 15\\ 5 & 10 & 20 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1+\frac{1}{2}$ |
|      | $= \begin{bmatrix} 7 & 5 & 13 \\ 5 & 8 & 2 \\ 8 & 3 & 3 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{1}{2}$   |
| 38.  | <ul> <li>An equation involving derivatives of the dependent variable with respect to the independent variables is called a differential equation. A differential equation of the form dy/dx = F(x, y) is said to be homogeneous if F(x, y) is a homogeneous function of degree zero, whereas a function F(x, y) is a homogeneous function of degree n if F(λx, λy) = λ<sup>n</sup> F(x, y). To solve a homogeneous differential equation of the type dy/dx = F(x, y) = g(y/x), we make the substitution y = vx and then separate the variables.</li> <li>Based on the above, answer the following questions :</li> <li>(I) Show that (x<sup>2</sup> - y<sup>2</sup>) dx + 2xy dy = 0 is a differential equation of the type dy/dx = g(y/x).</li> <li>(II) Solve the above equation to find its general solution.</li> </ul> |                 |
| Sol. | $(T, (2, 2)) \rightarrow (2, 1, 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |
|      | (I) $(x^2 - y^2)dx + 2xydy = 0$<br>$\Rightarrow \frac{dy}{dx} = \frac{y^2 - x^2}{2xy}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1               |

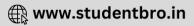
Get More Learning Materials Here : 📕

$$= \frac{\left(\frac{y}{x}\right)^{2} - 1}{2\left(\frac{y}{x}\right)}$$

$$= g\left(\frac{y}{x}\right)$$
(II)  $y = vx \Rightarrow \frac{dy}{dx} = v + x\frac{dy}{dx}$ 

$$v + x\frac{dv}{dx} = \frac{v^{2} - 1}{2v} - v = \frac{-1 - v^{2}}{2v}$$

$$\Rightarrow \int \frac{2v}{1 + v^{2}} dv = -\int \frac{dx}{x}$$


$$\Rightarrow \log |1 + v^{2}| + \log |x| = \log C$$
or  $x\left(1 + \frac{y^{2}}{x^{2}}\right) = C$ 
or  $x^{2} + y^{2} = Cx$ 

$$1$$

$$1$$

Get More Learning Materials Here : 📕



